

Z-9B User Manual

Using this Manual – Legend

Revision History

Date	Document Version
2024.03.11	V4.0

Caution

- 1. The Z-9B equipped with a laser lighting module, which is a Class 3B invisible laser. DO NOT exposure eyes to the beam within 12 meters or observe the beam by any optical instrument. DO NOT place any inflammable within 20 centimeters in front of the lighting module.
- 2. When not in use, store the Z-9B in the package box. The recommended storage environment is a relative humidity less than 40% at a temperature of $20\pm5^{\circ}$ C. If the lenses fog up. The water vapor will usually dissipate after turning on the device for a while.
- 3. Do not expose the thermal camera lens to a strong energy source such as sun, lava or laser beam. The temperature of the observation target should not exceed 800°C, otherwise it will cause permanent damage.
- 4. Do not place the product under direct sunlight, in areas with poor ventilation, or near a heat source such as a heater.
- 5. Do not frequently power on/off the product. After it is turned off, wait at least 30 seconds before turning back on, otherwise the product life will be affected.
- 6. Make sure the pod port and pod surface are free from any liquid before installation.
- 7. Make sure the pod is securely installed onto the aircraft, the microSD card slot cover is clean and firmly in place.
- 8. Make sure the pod surface is dry before opening the microSD card slot cover.
- 9. Do not plug or unplug the microSD card during use.
- 10. Do not touch the surface of the camera lenses and keep it away from hard objects. As doing so may lead to blurred images and affect the imaging quality.
- 11. Clean the surface of the camera lenses with a soft, dry, clean cloth. Do not use alkaline detergents.
- 12. When not receiving valid carrier INS data, the yaw shaft of the pod will drift about 15 degrees per hour because of the earth rotation. To make sure the pod attitude corrects, it is necessary to transmit valid carrier INS data, usually the GNSS should be positioning.

Catalog

Introduction	1
Synopsis	1
Characteristics	2
Overview	3
Installation	4
Configuring & Updating Firmware	5
Camera Configuring & Firmware Updating	5
GCU Configuring & Firmware Updating	8
Gimbal Updating Firmware	13
Real-time Video Playing	13
Appendix 1 Specifications	14
Appendix 2 SEI Data Structure	18
Appendix 3 Quick-Release Module Fuselage Section	19
Dimensions	19
Port Definition	20
Appendix 4 MAVLink Configuration	21
ArduPilot	21
PX4	22
Appendix 5 MAVlink Communication Process	23
Appendix 6 Wiring Diagram of Connecting to Open Source Autopilot	24

Introduction

Synopsis

The Z-9B equips with a high accuracy 3-axis nonorthogonal gimbal, an 120x hybrid zoom camera and a long-wave thermal camera, which can provide visual and infrared images simultaneously. Thanks to the laser range finder, the Z-9B can provide the location of a target and the distance to it that improves working efficiency. Turning on the laser lighting module, the Z-9B can provide a clear image even in complete dark environments.

The Z-9B have AI multi-object detection and tracking function. The gimbal camera can intelligently identify the persons and vehicles in the image, and constantly track one of them.

The Z-9B can be mounted tool-lessly onto multiple carriers, whether downward or upward. With the GCU and the Dragonfly software, user can watch the image from the camera and control the pod real-timely on a computer.

Characteristics

- Features AI multi-object detection and tracking, which can constantly track one of the persons and vehicles intelligently identified in the image.
- Carries an 120x hybrid zoom camera, a thermal camera and a laser range finder.
- Laser lighting module ensures the cameras getting a clear image even in complete darkness.
- 3-axis orthogonal mechanical stabilized structure, is able to spin continually around its yaw axis
- Built-in GCU module makes the product more integrated.
- Supports network, UART and S.BUS control. Supports both private protocol and MAVlink protocol.
- Thanks to the Dual-IMU complementary algorithms with IMU temperature control and carrier AHRS fusion, the Z-9B provides a stabilization accuracy at $\pm 0.01^{\circ}$.
- Can be mounted onto multiple carriers, whether downward or upward.
- With the Dragonfly software, user can watch the image and control the gimba without protocol ducking.
- Screen supports overlaying OSD information such as latitude, longitude and altitude. Image supports shooting point coordinate EXIF save. Video stream upports SEI stacking.
- 20~53 VDC wide voltage input.

Overview

- 1. Update Port
- 3. Laser Range Finder
- 5. Laser Lighting module
- 7. MicroSD Card Slot
- 2. Damping Platform
- 4. Thermal Camera
- 6. Zoom Camera

Installation

Turn the load locking knob to the unlocked position, and push the load at a constant speed along the quick disconnecting guide rail until the quick disconnecting component makes a slight "click" sound to turn the knob to the locked position.

/ Make sure the load is installed and locked after installation!

Turn the load locking knob to the release position. Press and hold the load release button on the other side and remove the load.

/ During use or storage, cover the SD card protection cover to prevent liquid or dust from entering.

/ \uparrow The pod heats while operating. Please ensure the device good cooling.

Configuring & Updating Firmware

- I Ensure the pod and the GCU have both been updated to the latest firmware before use. Otherwise, usage may be affected.
- $\langle \mathbf{i} \rangle$ Ensure the diver of the config module is installed on the computer before configuring or updating the firmware.
 - Before configuring, the computer should be set to a static IP address, which is in the same network segment with the GCU and the camera (without IP address conflicts). The default IP address of the GCU and the camera are 192.168.144.121 and 192.168.144.108, and an interior reserved IP address is 192.168.144.199.

 $\langle \mathbf{j} \rangle$ Do not power off the device while updating the firmware. Restart the device once firmware update is complete.

/I For Windows10 or higher version operating system, network authority needs to be conferred while first running the GCU Config software.

Camera Configuring & Firmware Updating

Camera Configuring

- 1. Connect the computer and ETH port of the Quick-Release module fuselage section with the network conversion module. Power on the devices.
- 2. Visit http://192.168.144.108:8554 on the computer (if the IP address of the camera has been changed, the IP address in the URL should be replaced with the current camera IP address). It is recommended to use Microsoft Edge.
- 3. Configure the camera in the web page, and click" Submit" to save the configuration.
- 4. Restart the pod to enable the configurations to take effect.
- /<code>!</code> If the configuration page cannot fully read the current camera configuration, it should change another browser. DO NOT configuring the camera by force, or the camera will be damaged.

System	Setting
System Info	
Soft Version	XFLU_CR21M_V90007R00000B29
VIS model Version	5S-VIS-PL-20220914-2
IRF model Version	5S-IRF-PL-20220308-2
IR Version	23Y-10M-22D
Device Configuration	
Camera IP:	192 . 168 . 144 . 108
Camera UDP Control Port:	14551 (1 ~ 65535 except 2000)
Video Compression Quality:	high 🗸
Save File Type	MP4 v ts stream plays normally on vic
HDMI Output FPS:	60 🗸
Stream Type:	h.264 🗸
Resolution:	1080P V
Rtsp Encoder Bitrate	2048 (500 ~ 6000)
Rtmp Server Name:	rtmp://192.168.2.117/live/viewpro
Gateway:	192 . 168 . 144 . 1
Net Mask:	255 . 255 . 255 . 0
Web Port:	8554 (8000 ~ 9000)
RTSP Output for image transmission:	Default ~
UDP Send Setting	
UDP Send Switch:	Open 🗸
UDP Send IP:	192 . 168 . 144 . 117
UDP Send Port:	55012 (1024 ~ 65535 except 2000 / 8554)
UDP Send Type:	TS V
Subr	nit
XML Upload	

• Camera IP

The default value is 192.168.144.108.

• Camera UDP Control Port

The default value is 14551.

- Video Compression Quality The higher compression quality, the better image quality. The default value is high.
- Save File Type The default value is MP4.
- Stream Type The default value is h.264.
- Resolution The default value is 1080P.

• Rtsp Encode Bitrate

The unit is bps. The larger the bitrate, the better RTSP video, but the higher bandwidth requirement of the image transmission system. The default value is 2048.

Rtmp Server Name

The default value is rtmp://192.168.2.117/live/viewpro.

Gateway

The default value is 192.168.144.1.

Net Mask

The default value is 255.255.255.0.

• Web Port

The default value is 8554.

- RTSP Output for image transmission
 RTSP video streaming optimization for image transmission systems.
 The Real-time Priority option will reduce the bandwidth requirement of the image transmission system, but will suppress image quality.
 The Low-fps and Real-time Priority option will further reduce the bandwidth requirement of the image transmission system, but will suppress image quality and reduce frame rate. The default value is Default.
- UDP Send Switch The default value is Open.
- UDP Send IP The default value is 192.168.144.117.
- UDP Send Port The default value is 55012.
- UDP Send Type The default value is TS.

Camera Firmware Updating

- 1. Connect the computer and ETH port of the Quick-Release module fuselage section with the network conversion module. Power on the devices.
- 2. Run netConfig software. Input current camera IP address and click "Connect".
- 3. Drag the firmware file. Click "Firmware Download" and wait for the download completing.
- 4. Restart the pod to enable the updating to take effect.

GCU Configuring & Firmware Updating

GCU Configuring

- Connect the computer and ETH port of the Quick-Release module fuselage section with the network conversion module, or connect the computer and UART port of the Quick-Release module fuselage section with the config module.
- 2. Power on the device. Run the GCU_Config software and choose UDP port or the COM port corresponding to the config module. Click"Start Config", the, software will display current configuration of the GCU.
- 3. Configure the GCU in the software.
- The new parameter filled in textbox will not be saved until clicking "Enter"on the keyboard. It is unnecessary to click "Enter" after editing other settings.

	Wetwork Setting		S. BUS	Setting			
GCU IP	Gateway IP		Rev	Follow	Lock	Mavlink	
Subnet Mask	Remote IP	Mode	None V	Ortho	Lock	Gaze	Start Capfin
Camera IP			None -	None		Neutral	start conig
Stream2		Track	None -	Exit		Track	GCU Firmware
Stream3		Pitch	None -		-0		Gimbal Model
Stream4		Yaw	None -				Ginbarmoder
		Zoom	None 🔻 🕅	Wide	Stop	Tele	Gimbal Firmware
	Gimbal Data	Pic&Rec	None 🗸 🗌	Record	None	Shutter	
Roll	Pitch Yaw	VideoSwitch	None 🔻 🗌	Palette	None	Pic-in-Pic	
	Carrier Data	IRCUT	None -	Off	0	On	Reset
GNSS		Lamp	None -	Off		On	Calibration
KOII	Pitch			Off		On	

1.Network setting

- GCU IP / Gateway IP / Subnet mask / Remote IP Configure the network parameters of the GCU. Ensure the parameters will not cause network linkage abnormal.
- Camera IP

Fill in the IP address of current camera, Video stream addresses will be generated automatically by the GCU. It will not change the IP address of the camera.

2.Gimbal Data

Display the altitude data of the pod.

3.Carrier Data

Display the INS positing statue, altitude angle and northward / eastward / upward accuracy of the carrier.

4.S.BUS Setting

Set S.BUS channels corresponding to pod functions and their renversements. The pitch and yaw are liner channel, and others are switch channels.

For switch channels, pulse width entering $[1000\mu s, 1300\mu s]$ triggers lower function once; entering $[1300\mu s, 1700\mu s]$ triggers middle function once; entering $[1700\mu s, 2000\mu s]$ triggers higher function once. Pulse width varying in the same interval does not repeat the trigger. Mode

Follow: Head follow mode. Yaw angle and pitch angle are controllable. Heading of the pod rotates with the carrier and pitch of the pod keeps current attitude while no rotating command is received.

Lock: Head lock mode. Yaw angle and pitch angle of the pod are controllable and keep current angle while no rotating command is received.

MAVlink: The pod can be controlled by MAVlink protocol. Other S.BUS channels controlling is unavailable in the mode.

Ortho: Orthoview mode. In this mode, the pod rotates to vertical downward. The yaw angle follows the carrier and is uncontrollable. Otherwise the yaw angle remains unchanged and is controllable.

Gaze: Gaze mode. Pod constantly aims current position in the center of the view. To pods equipped with laser ranger finder, turning on ranging before entering gaze mode will improve the accuracy of locking. The gaze mode is available only when the pod receiving valid GNSS data.

Neutral: Pod returns its neutral position

Track

The pod will automatically keep tracking the target in the center of the screen.

• Pitch / Yaw

Control value corresponds the angular velocity of pitch / yaw of the pod.

Zoom

The zoom rate constantly varies while the channel value is in Tele / Wide interval, until the channel value enters stop interval or the camera is at max / min zoom rate.

Pic & Rec

The Pic command triggers camera shoot one photo. The Rec command starts or stops recording. It is able to shoot photos while recording without ending record. The pictures and the video are saved in the MicroSD card of the pod. Video Switch

Palette: To pods equipped with thermal camera, this command switches options of palette.

Pic-in-pic: To pods equipped with multiple cameras, this command switches different view of the cameras.

IRCUT

Turn on IRCUT, the camera will switch to night scene to achieve a better image quality in low-light environment.

Lamp

To pods equipped with laser lighting module, choose this function to turn on laser lighting and IRCUT at the same time.

/N Several models of pod equipped with laser lighting module, which is a Class 3B invisible laser. DO NOT exposure eyes to the beam within 12 meters or observe the beam by any optical instrument. DO NOT place any inflammable within 20 centimeters in front of the lighting module.

Ranging

To pods equipped with laser range finder, this command turns on / off ranging. The pod is able to calculate out the longitude, latitude and elevation of the target while receiving valid carrier INS data.

5.Reset

Click to reset all the parameters of the GCU.

6.Calibration

Click to calibrate the pod. Please keep the pod static while calibrating.

Q After calibration, it is normal that the yaw shaft of the pod drifts about 15 degrees per hour when not receiving valid carrier INS data. To make sure the pod attitude corrects, it is necessary to transmit valid carrier INS data, usually the GNSS should be positioning.

GCU updating Configuring

- 1. Connect the computer and UART port of the Quick-Release module fuselage section with the config module.
- 2. Run FreeFlightIAP software. Choose the COM port corresponding to the config module.
- 3. Click "browse", choose the firmware file, click "download" and wait for the updating complete.

Gimbal Updating Firmware

- 1. Connect the computer and the pod update port with the config module. Power on the devices.
- 2. Run GimbalConfig software. Choose the COM port corresponding to the config module. Click "Open Firmware", choose the firmware file, click "Start Upgrade" and wait for the updating complete.

				Parar	neter
No.				•	Open Port
		-		Open Parame	ter From File
				Save Param	eter To File
				Upload P	arameter
				Download	Parameter
				Save Parame	eter To Flash
Roll Angle	Pitch Angle	Yaw Angle		Gim	bal
Acce X Gyro X	Sensor Acce Y Gyro Y	Acce Z Gyro Z	Gi	mbal Run	Gimbal Stop
Angle 0	Gimbal Angle Angle 1	Angle 2		Gyro Cal	ibration
Communication Lo	ist !				
			Open Firr	mware	Start Upgrade

Real-time Video Playing

Example as camera IP address 192.168.144.108: Stream address: rtsp://192.168.144.108

Appendix 1 Specifications

General			
Product Name	Z-9B		
Dimensions	173 x 144 x 206mm		
Weight	1158g		
Operating Voltage	20 ~ 53 VDC		
Power	21.4W (AVG, ranging & light off) / 50.4W (Stall, ranging & light on)		
Mounting	Downward / Upward		
	Horizonal Error:1.8mHorizonal Distance:105mVertical Error:0.7mRelative Height:75m		
Accuracy ^[1]	Horizonal Error:17.4mHorizonal Distance:513mVertical Error:6.7mRelative Height:119m		
	Horizonal Error: 33.8m Vertical Error: 13.7m @ Horizonal Distance: 1003m Relative Height: 246m		
Gimbal			
Gimbal Type	3-axis orthogonal Mechanical Stabilization		
Angular Accuracy	±0.01°		
Controllable Range	Pitch: -120° \sim 55° , Roll: \pm 40° , Yaw: \pm 360° constantly		
Max Controllable Speed	±200°/s		
Zoom Camera			
Image Sensor	1/2.8-inch CMOS, Effective Pixels: 4.09M		
Lens	Actual Focal Length: 4.7~141mm (Equivalent focal length: 27.9~837mm) Aperture: $f/1.5~f/4.0$ HFOV: 59.5°~ 2.2° VFOV: 35.8°~ 1.2° DFOV: 66.6°~ 2.5°		
Resolution	2688(H) x 1520(V)		
Pixel Size	2.0μm(H) x 2.0μm(V)		
Optical Zoom Rate	30x		
Equivalent Digital Zoom Rate	4x		

		Person ^[2] : 3283m		
	EN62676-4:2015	Light vehicle ^[3] : 4315m		
		Large vehicle ^[4] : 9192m		
Object Detection Distance		Person: 37500m		
	Johnson Criteria	Light vehicle: 115000m		
		Large vehicle: 245000m		
		Person: 657m		
	EN62676-4:2015	Light vehicle: 863m		
Object Identification Distance		Large vehicle: 1838m		
Object identification distance		Person: 9375m		
	Johnson Criteria	Light vehicle: 28750m		
		Large vehicle: 61250m		
		Person: 328m		
	EN62676-4:2015	Light vehicle: 432m		
Object Verification Distance		Large vehicle: 919m		
object vermeation Distance		Person: 4688m		
	Johnson Criteria	Light vehicle: 14375m		
		Large vehicle: 30625m		
Thermal Camera				
Thermal Sensor	Uncooled VOx Microb	olometer		
	Focal Length: 25mm (Equivalent focal length:			
	93.2mm)			
Long	Aperture: f/1.0			
Lens	HFOV: 17.5°			
	VFOV: 14.0°			
	DFOV: 22.3°			
Resolution	640(H) x 512(V)			
Pixel Size	12µm(H) x 12µm(V)			
Equivalent Digital Zoom Rate	8x			
Spectral Band	8~14µm			
Sensitivity (NETD)	<50mk@F1.0@25°C	Davas 1040		
Object Detection Distance		Person: 1042m		
Object Detection Distance		Light vehicle: 3194m		
		Large venicle:6806m		
Object Identification Distance	Johnson Criteria	reisuli: 200111		
	Johnson Criteria	Light vehicle: 19911		
		Porcon: 120m		
Object Varification Distance		Light vohicle: 300m		
object vernication Distance		Large vehicle: 851m		

Temperature Measurement	Optional (Temperature Measurement Type)
Temperature Measurement Method	Spot Measurement, Area Measurement
Temperature Measurement Range	-20° C~550° C
Temperature Alert	High-temp Alert, Low-temp Alert
Sun Burn Protection	Supported
Palette	White Hot, Black Hot, Tint, Fulgurite, Iron Red, Hot Iron, Medical, Arctic, Rainbow 1, Rainbow 2
Laser Range Finder	
Wavelength	905nm
Max Laser Power	1mW
Beam Angle	2.5mrad
Beam Diameter	0.25m@100m
Laser Safety	Class 1M (IEC 60825-1:2014)
Measurement Accuracy	\pm 0.3m (\leq 300m) / \pm 1.0m (>300m)
Measurement Range	5-1800m (φ12m vertical surface with 20% reflectivity)
Laser Lighting Module	
Wavelength	850±10nm
Laser Power	0.8W x2
Beam Angle	8° +30°
Beam Diameter	14m+54m@100m
Effective Illumination Distance	≤ 200m
Laser Safety	Class 3B (IEC 60825-1:2014)
AI Multi-object Detection & Trac	king
Object Identification Size	≥ 30x20 px
Object Identification Rate	≥ 85%
Object Identification Quantity	≤ 50
Target Tracking Size	16x16~256x256 px
Tracking Deviation Refresh Rate	30Hz
Tracking Deviation Output Delay	≤ 60ms
Target Pixel Error	≤ ±1 px
Tracking Speed	>24 px / frame
Target Memory Time	>5s

Image & Video			
Image Format	JPEG		
Maximum Image Resolution	1920 x 1080		
EXIF	Shooting point coordinate		
Video Format	MP4		
Maximum Video	Stream: 1920 x 1080 @25fps		
Resolution	Recording: 1920 x 1080 @30fps		
Stream Encode Format	H.264, H.265		
Stream Network Protoco	RTSP		
Storage			
Supported SD Cards	Supports a U3/V30 or above MicroSD card with a capacity of up to 256GB		
Environment			
Operating Temperature	-20°C~ 50°C		
Storage Temperature	-40°C~ 60°C		
Operating Humidity	≤ 85%RH (Non-condensing)		

- [1] Measured by pod mounted on a dual antenna RTK positioned multicopter drone to a known coordinate point. The target positioning accuracy is influenced by carrier's positioning and orientation accuracy, angle between the direction of pod mounted and the heading of carrier, slant range, gradient of measurement line and air quality. The data is for reference only.
- [2] Reference dimension of person: 1.8x0.5m. Critical dimension under Johnson criteria is 0.75m.
- [3] Reference dimension of light vehicle: 4.2x1.8m. Critical dimension under Johnson criteria is 2.3m.
- [4] Reference dimension of large vehicle: 6.0x4.0m. Critical dimension under Johnson criteria is 4.9m.

Appendix 2 SEI Data Structure

```
typedef struct // 64 bytes. Little-endian byte order. Byte alignment
   uint8_t head[2]; // Header [0xEE, 0x16]
   struct
   {
         uint8 trng trig:1; // Ranging trigger flag
         uint8 t pip state:3; // Pic-in-Pic Statue
                           0-Zoom camera (main)+Thermal camera (sub);
                                    1-Thermal camera:
                           2-Thermal camera (main)+ Zoom camera (sub);
                                    3-Zoom camera
         uint8 t data valid:1; //Validity flag of carrier's coordinate, carrier's attitude
                           and camera's attitude
         uint8 t tgt valid:1; //Validity flag of target's coordinate
         uint8 treserved:2; // Reserved flag
   } flag:
   int32 tuav lon; // Longitude of carrier. [-180°, 180°). Resolution 1e-7deg
   int32 tuav lat; // Latitude of carrier. [-90°, 90°]. Resolution1e-7deg
   int32 tuav alt; // Altitude of carrier. Resolution 1mm
   int32 tuav hgt; // Relative height of carrier. Resolution 1mm
   int16 tuav phi; // Roll angle of carrier. [-180°, 180°). Resolution 0.01deg
   int16 t uav the; // Pitch angle of carrier. [-90°, 90°]. Resolution 0.01deg
   uint16 t uav psi; // Yaw angle of carrier. [0°, 360°). Resolution 0.01deg
   int16 t cam phi; // Roll angle of camera. [-90°, 90°]. Resolution 0.01deg
   int16 t cam the; // Pitch angle of camera. [-180°, 180°). Resolution 0.01deg
   uint16 t cam psi; // Yaw angle of camera. [0°, 360°). Resolution 0.01deg
   uint16 t cam1 zoom; // Zoom rate of zoom camera. Resolution 0.01x
   uint16 t cam2 zoom; // Zoom rate of thermal camera. Resolution 0.01x
   uint16 trng dist; // Distance from target. Resolution 0.1m (Invalid, 0)
   uint16 t gnss week; //GNSS week
   uint32 t gnss itow; //GNSS microsecond. Resolution 1ms
   int32 t tgt lon; // Longitude of target. [-180°, 180°). Resolution 1e-7deg (Invalid, 0)
   int32_t tgt_lat; // Latitude of target. [-90°, 90°]. Resolution 1e-7deg (Invalid, 0)
   int32_t tgt_alt; // Altitude of target. Resolution 1mm (Invalid, 0)
   uint16 t cam1 fl1x; // Focal length of zoom camera at 1x. Resolution 0.01mm
   uint16 t cam2 f1x; // Focal length of thermal camera at 1x. Resolution 0.01mm
   uint8 treserved[4]; // Reserved
   uint8 t check sum; // Checksum
} SdSei t;
```

Appendix 3 Quick-Release Module Fuselage Section

Dimensions

🔨 Use screws of proper length to fix the Quick-Release module. Too short screws short may cause the fixation unsecure, and too long screws may intervene with the device.

Port Definition

1. POWER

2. ETH 3. S.BUS/UART

Port	Pin	Definition	Description
	1	GND	
	2	GND	
POWER	3	NC	Operating Voltage: 14~52V DC
	4	Vin	
	5	Vin	
	1	NC	
	2	NC	GCU configuring;
стц	3	T+	Private protocol control:
	4	T-	
	5	R+	HD image Output
	6	R-	
	1	GND	Support S.BUS1 standard such as FASST
S.BUS	2	5V	and SFHSS and S.BUS2 standard such as
	3	S.BUS	FASSTest
UART	1	GND	GCU configuring;
	2	UART_Rx	Private protocol control;
	3	UART_Tx	MAVlink protocol control

Appendix 4 MAVLink Configuration

ArduPilot

SERIAL1	
SERIAL1_BAUD	115
SERIAL1_OPTIONS	1024
SERIAL1_PROTOCOL	2
SR1	
SR1_ADSB	0 Hz
SR1_EXIT_STAT	0 Hz
SR1_EXTRA1	0 Hz
SR1_EXTRA2	0 Hz
SR1_EXTRA3	0 Hz
SR1_PARAMS	0 Hz
SR1_POSITION	0 Hz
SR1_RAW_CTRL	0 Hz
SR1_RAW_SENS	0 Hz
SR1_RC_CHAN	0 Hz
MNT1	
MNT1_TYPE	4 (Gremsy) / 6 (SToRM32 Mavlink)
RC1	
RC1_OPTOPN	213 (MOUNT1_PITCH)
RC2	
RC2_OPTOPN	214 (MOUNT1_YAW)
RC3	
RC3_OPTOPN	163 (MOUNT1_LOCK)
CAM	
CAM_TRIGG_TYPE	3 (Mount)

Q The MNT1_TYPE is recommended as 6. The MNT1_ROLL_MAX, MNT1_ ROLL_MIN, MNT1_PITCH_MAX, MNT1_PITCH_MIN, MNT1_YAW_MAX and MNT1_YAW_MIN will be configured automatically depend on data from the GCU. The angle limit should be set manual while the MNT1_ TYPE is 4.

Q The RC1~RC3 are just examples, which can be defined according to actual situation.

MAVLink	
MAV_1_CONFIG	TELEM2
MAV_1_MODE	Custom / Gimbal
MAV_1_RATE	115200 B/s
Serial	
SER_TEL2_BAUD	115200 8N1
Mount	
MNT_MAIN_PITCH	AUX1
MNT_MAIN_YAW	AUX2
MNT_MODE_IN	Auto (RC and Mavlink Gimbal)
MNT_MODE_OUT	MAVLink gimbal protocol v2
Camera Setup	
Trigger mode	Distance based, on command (Survey mode)
Trigger interface	MAVLink (forward via MAV_CMD_IMAGE_START_
	CAPTURE)

Q The MAV_1_MODE is recommended as Custom.

🔍 The AUX1 and AUX2 are just examples, which can be defined according to actual situation. It should be configured in RC Map for further application.

Q, The trigger mode is just an example, which can be modified according to actual situation.

Appendix 5 MAVlink Communication Process

After receiving HeartBeat from the flight controller, and identifying SYSID and COMPID of the flight controller, GCU will operate as below:

- 1. GCU actively sends package *MAVLINK_MSG_ID_HEARTBEAT 0* at a frequency of 2Hz.
- GCU requests following packages in turn at a frequency of 1Hz. The flight controller fills these parameters into package *MAVLINK_MSG_ID_ COMMAND_LONG 76* until the request completing.: *MAVLINK_MSG_ID_EKF_STATUS_REPORT 193 (No this package for PX4); MAVLINK_MSG_ID_GLOBAL_POSITION_INT 33; MAVLINK_MSG_ID_SCALED_IMU 26; MAVLINK_MSG_ID_SYSTEM_TIME 2; MAVLINK_MSG_ID_RC_CHANNELS 65; MAVLINK_MSG_ID_CAMERA_TRIGGER 112 (No this package for APM); MAVLINK_MSG_ID_AUTOPILOT_STATE_FOR_GIMBAL_DEVICE 286; MAVLINK_MSG_ID_GIMBAL_DEVICE_SET_ATTITUDE 284* (No this package for APM);
- 3. GCU actively sends package *MAVLINK_MSG_ID_GIMBAL_DEVICE_ ATTITUDE_STATUS 285* at a frequency of 100 Hz while the packages above being received and the pod being operational.
- 4. Generally, the flight controller will request package *MAVLINK_MSG_ID_GIMBAL_DEVICE_INFORMATION 283*, which GCU does not send actively.

Appendix 6 Wiring Diagram of Connecting to Open Source Autopilot

